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BAFFLE THICKNESS EFFECTS I N  FUEL SLOSHING EXPERIMENTS 

By Henry A. Cole, Jr. 
Ames Research Center 

SUMMARY 

Measured damping forces  on f u e l  sloshing b a f f l e s  of varying thickness are 
presented from tests conducted with water i n  a two-dimensional tank and a 
cy l indr ica l  tank. The r e s u l t s  show t h a t  baf f le  thickness decreases b a f f l e  
effect iveness  by as much as 50 percent a t  moderate amplitudes of o s c i l l a t i o n . .  

Ink-trace experiments conducted i n  t h e  two-dimensional tank show b a f f l e  

A t a b l e  of c r i t i c a l  thick- 
thickness e f f e c t s  on flow s imi la r i ty .  These r e s u l t s  a r e  used t o  show t h e  mech- 
anism by which b a f f l e  thickness a f f e c t s  damping. 
ness f o r  flow s i m i l a r i t y  i s  given t o  serve as a guide t o  designers and 
experimenters. 

INTRODUCTION 

The design of b a f f l e s  t o  damp l i q u i d  propel lants  i n  rocket vehicles 
usual ly  depends upon r e s u l t s  of experiments conducted i n  small-scale tanks.  
This procedure is  followed because no s a t i s f a c t o r y  t h e o r e t i c a l  methods a r e  
avai lable  t o  account f o r  t h e  complex turbulent motion of t h e  f l u i d ,  and f u l l -  
sca le  t e s t s  a r e  usual ly  impractical  during development stages of t h e  rocket 
vehicle .  Because of t h e  wide gap i n  s i z e  between small-scale experiments and 
fu l l - sca le  vehicles,  t h e  designer must determine whether or not c e r t a i n  r e s u l t s  
from small-scale experiments a r e  applicable t o  fu l l - sca le  vehicles. To help i n  
t h i s  determination, experiments have been conducted on one problem area of 
s m a l l  scale  experiments, the  b a f f l e  thickness.  

Geometric s i m i l a r i t y  should be maintained between model and ful l -scale ,  
and t h e  thickness of t h e  b a f f l e  is  sometimes an important geometric parameter. 
Since, i n  t r u e  sca le ,  most s m a l l  scale  models require  exceedingly t h i n  materi- 
als f o r  baf f les ,  t h e r e  i s  a tendency t o  make t h e  model baffle th icker  t o  simp- 
l i f y  construction. 
thickness f a c t o r  has been ignored t o  t h e  extent t h a t  thickness of p l a t e s  used 
i s  not even specif ied.  
reference 1 i n  which it was pointed out t h a t  moderate b a f f l e  thickness could 
reduce b a f f l e  effect iveness  by as much as 50 percent. I n  t h e  present report  
t h e  e f f e c t s  of thickness a r e  considered i n  more d e t a i l  t o  allow designers t o  
judge t h e  a p p l i c a b i l i t y  of various experiments and a l s o  t o  serve as a guide t o  
experimenters. 

Unfortunately, i n  a great  port ion of t h e  l i t e r a t u r e  the  

Some l imited e f f e c t s  of thickness were presented i n  

Another sca l ing  parameter f o r  s i m i l a r i t y  is, of course, Reynolds number. 
However, it was pointed out by Miles i n  reference 2 t h a t  drag coef f ic ien t  of 
p l a t e s  reported i n  reference 3, was uncorrelated with Reynolds number over a 
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range from 5X103 t o  14~10~. 
c r i t i c a l  Reynolds number above which t h e  flow i s  f u l l y  turbulent  and 
s t a n t  i n  steady flow" (5 = 1000). 
coer f ic ien ts  t o  Reynolds number, a considerable number of experiments have 
been conducted i n  s m a l l  tanks with w a t e r  as a working f l u i d  without regard f o r  
Reynolds number. 
as applied t o  o s c i l l a t o r y  flow, t h e  present experiments were conducted a t  mean 
Reynolds numbers of 3000 and grea te r .  

He a l s o  noted "a l e s s  r e l i a b l e  c r i t e r i o n  is  t h e  

CD con- 
Because of t h i s  insensi t iveness  of drag 

To reduce t h e  uncertain e f f e c t s  of c r i t i c a l  Reynolds number 

I n  t h e  present report ,  r e s u l t s  of e f f e c t s  of b a f f l e  thickness on t h e  damp- 
ing effect iveness  a r e  presented from forced-osci l la t ion measurements i n  a two- 
dimensional tank and f r e e  o s c i l l a t i o n s  i n  a c y l i n d r i c a l  tank. Ink pa t te rns  

. a r e  a l s o  shown i n  order t o  demonstrate t h e  mechanism of t h e  flow and t o  indi-  
ca te  
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the l imi ta t ions  of appl icat ion of model r e s u l t s .  

NOTATION 

double amplitude of motion a t  t h e  b a f f l e  edge 

mean double amplitude of motion a t  b a f f l e  edge i n  c y l i n d r i c a l  tank 

mean absolute veloci ty  of b a f f l e  edge, f t / s e c  

cy l indr ica l  tank radius 

amplitude of fundamental-frequency b a f f l e  force i n  phase with veloci ty  
f o r  a t h i c k  p l a t e  

amplitude of fundamental-frequency b a f f l e  force i n  phase with veloci ty  
f o r  a t h i n  p l a t e  

depth of b a f f l e  measured from quiescent l i q u i d  surface t o  b a f f l e  center  
l i n e  

depth of f l u i d  

b a f f l e  Reynolds numbers defined i n  t e x t  f o r  two-dimensional and cyl indri-  
c a l  tank f l u i d  o s c i l l a t i o n s  

b a f f l e  thickness 

b a f f l e  width measured along perpendicular l i n e  from w a l l  t o  edge of 
b a f f l e  

amplitude of l i q u i d  surface motion a t  tank w a l l  i n  fundamental sloshing 
mode 

kinematic v i scos i ty  f o r  water a t  78' F, 1.08~10-' f t2/sec 
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damping r a t i o  

damping r a t i o  of tank without b a f f l e  

MEMURED DAMPING FORCES WITH VARIOUS THICKNESS RATIOS 

Two types of damping measurements were used t o  vary b a f f l e  effect iveness  

I n  t h e  forced-osci l la t ion technique, 
with thickness: forced o s c i l l a t i o n  of p l a t e s  i n  a two-dimensional tank and 
f r e e  o s c i l l a t i o n  i n  a c y l i n d r i c a l  tank. 
t h e  b a f f l e s  were driven i n  s inusoidal  motion i n  a rectangular tank with t h e  
b a f f l e s  spanning t h e  width of t h e  tank. Thus, t h e  flow was two-dimensional. 
The damping force w a s  obtained by Fourier analysis  of t h e  amplitude and force 
measurements. I n  t h e  f ree-osc i l la t ion  technique, a c y l i n d r i c a l  tank with r i n g  
b a f f l e s  w a s  placed i n  s inusoidal  motion with a hydraulic drive system, and w a s  
then released. The damping effect iveness  w a s  obtained by taking t h e  logari th-  
mic decrement of t h e  wave height measurements i n  f r e e  motion. The tes t  equip- 
ment and reduction of data are described i n  reference 1. 

Forced-Oscillation D a t a  

The forced-osci l la t ion measurements a r e  shown on t a b l e  I which gives t h e  
period of t h e  o s c i l l a t i o n  and t h e  Reynolds number which i s  defined as follows 

- 2 i w  Re = - 
V 

The Reynolds numbers i n  these t e s t s  a r e  comparable t o  Reynolds numbers t o  be 
expected i n  fu l l - sca le  tanks and a r e  considerably above c r i t i c a l  Reynolds nun- 
bers  of 1 t o  5x103 previously mentioned. 
a t  three amplitude-to-width r a t i o s  (A/w) are shown over a range of frequencies. 
Final ly ,  t h e  effect iveness  of t h e  b a f f l e  r e l a t i v e  t o  a p l a t e  1/16 inch t h i c k  
i s  shown as aJao. It may be seen t h a t  a t  amplitude-to-width r a t i o s  of 0.5 
t h e  th ick  p l a t e  is  only half  as e f fec t ive  as t h e  t h i n  p l a t e .  
noted t h a t  t h e  precis ion of these r e s u l t s  i s  about 10 percent as s t a t e d  i n  ref-  
erence 1.) 

The force measurements on t h e  p l a t e  

(It should be 

Free-Oscillation D a t a  

The f ree-osc i l la t ion  damping r a t i o s ,  obtained from t h e  logarithmic decre- 
ment of wave height i n  a 3-foot-diameter c y l i n d r i c a l  tank, a r e  shown on f ig-  
ure 1 f o r  various b a f f l e  thicknesses and f o r  t h e  b a f f l e  placed a t  various 
depths. The "zero thickness" b a f f l e  w a s  obtained by grinding the  outer edge of 
t h e  
because it w a s  desired t o  maintain i t s  r i g i d i t y  so  t h a t  r e s u l t s  would not be 
confused with f l e x i b i l i t y  e f f e c t s  reported i n  reference 4. 
width range var ies  from about 0.5 t o  1.1 f o r  these  t e s t s  based on the  mean 

t / w  = 0.04 b a f f l e  t o  a sharp edge. The b a f f l e  w a s  not made thinner  

The amplitude-to- 
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amplitude of t h e  b a f f l e  around the  r ing  

Mean Reynolds numbers here are 3x103 and grea te r  defined as follows: 

where dimensions are i n  feet .  This Reynolds number i s  based on t h e  mean abso- 
l u t e  veloci ty  of t h e  b a f f l e  edge averaged around t h e  r ing,  t h e  b a f f l e  width, 
and a kinematic v i scos i ty  of water of 1.08~10~~ ft"/sec.  This Reynolds number 
becomes equivalent t o  the one used i n  reference 2 with the  approximation 

a = (2 - :)e3 * W 

It may be seen from t h e  r e s u l t s  t h a t  increasing thickness tends t o  reduce 
b a f f l e  effect iveness  (with t h e  exception of a reverse t rend from 0 t o  0.04). 
I n  view of t h e  f a c t  t h a t  t h e  zero thickness w a s  obtained by sharpening t h e  
outer edge and, hence, t h a t  geometric s i m i l a r i t y  w a s  v iolated,  it i s  not known 
whether t h e  reverse t rend  i s  due t o  thickness or  t o  t h e  geometric change. 

Effect of Amplitude 

The data from t h e  previous sect ions a r e  shown p lo t ted  on f igure  2 versus 
amplitude-to-width r a t i o  and approximate f a i r i n g s  have been shown so  t h a t  
thickness e f f e c t s  can be estimated. The data  from f igure  1 were referenced t o  
the  0.04 b a f f l e  and data on t a b l e  I a r e  referenced t o  a b a f f l e  with a thick- 
ness r a t i o  of 0.01. 
t r a c t e d  before taking t h e  r a t i o  s o  t h a t  t h e  t r u e  e f f e c t  of t h e  b a f f l e  on t h e  
damping would be obtained. It should be noted t h a t  the data a r e  qui te  con- 
s i s t e n t  within kl? percent which i s  t h e  precision t o  be expected when extract-  
ing damping values from slow time-varying exponential decays. The s o l i d  l i n e s  
a r e  approximate curves t o  indicate  trends within t h i s  precis ion.  It i s  in te r -  
e s t i n g  %hat t h e  th ick  b a f f l e s  have effect iveness  approaching t h a t  of the  t h i n  
p l a t e  a t  la rge  amplitudes. 

Also t h e  damping r a t i o  without b a f f l e s  ( c 0 )  w a s  sub- 

As previously noted, the  e f f e c t  of s m a l l  geometric changes, such as 
sharpening t h e  b a f f l e  edge, has not been determined. I n  t h e  f ree-osc i l la t ion  
t e s t s ,  t h e  b a f f l e s  had sharp corners as compared t o  t h e  s l i g h t l y  rounded 
b a f f l e  edge f o r  t h e  forced-osci l la t ion t e s t s  ( t a b l e  I ) .  
s is tency of t h e  data on f igure  2, it appears t h a t  t h e  e f fec t  of t h i s  geometric 
change is  s m a l l  compared t o  t h e  overa l l  thickness e f f e c t .  The data on f ig-  
ure 2 may a l s o  be compared with t h e  f ree-osc i l la t ion  data referenced t o  t h e  
zero-thickness b a f f l e  without subs tan t ia l ly  changing t h e  comparison. Hence, 
it appears t h a t  the  e f f e c t  of these s m a l l  geometric changes i s  secondary and 
falls  within t h e  precis ion of t h e  data .  

I n  view of t h e  con- 
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Ink-Trace Experiment s1 

Because of t h e  l a rge  difference i n  the  measured forces  on t h i c k  and t h i n  
b a f f l e s ,  some ink-trace experiments were conducted i n  order  t o  gain an ins ight  
i n t o  t h e  flow mechanism. Baff les  3 inches wide with various thickness-to-width 
r a t i o s  were i n s t a l l e d  on t h e  s ide  w a l l  i n  t h e  two-dimensional tank of ref-  
erence 1. A depth of f i v e  times t h e  b a f f l e  width was used so t h a t  surface 
e f f e c t s  would be negl ig ib le .  
paddle t o  give amplitude-to-width r a t i o s  from 0.33 t o  2.5 which correspond t o  
Reynolds numbers from 5x103 t o  40~10~. During t h e  osc i l l a t ions  a thinned m i x -  
t u r e  of India  ink w a s  introduced a t  t h e  b a f f l e  edge, and the  motion w a s  photo- 
graphed with a 16 mm movie camera. 

The w a t e r  i n  t h e  tank was o s c i l l a t e d  by a hand 

Several  frames of ink pa t te rns  a r e  shown an f igu re  3 .  The background g r id  
i s  i n  1-inch squares and the  curved l i n e  shown i s  t h e  theo re t i ca l  streamline 
f o r  t h e  tank without a b a f f l e  as given i n  reference 5 .  A t  a constant amplitude 
of o sc i l l a t ion ,  a d i s t i n c t  change i n  t h e  flow pa t t e rn  occurs as t h e  b a f f l e  
becomes th icker .  
t / w  = 0.1 shed a s ing le  s t rong vortex a s  shown on f igu re  3 ( a ) .  Baff les  of 
t / w  = 0.23 and t h i cke r ,  on t h e  other  hand, shed multiple s m a l l  vor t ices  which 
t rave led  inward along t h e  surface of  t h e  b a f f l e  ( f i g .  3 ( b ) ) .  

A t  an amplitude-to-width r a t i o  of 0.6, ba f f l e s  up t o  

The paths f o r  upper and lower vor t ices  were t raced  and a r e  drawn on f ig-  
ure  4. t / w  = 0.02, 0.04, and 0.10 b a f f l e s  were c l ea r ly  
defined. 
and hence, t h e  l i n e s  ind ica te  only t h e  average d i rec t ion  of ink f l o w .  The 
beginning of t h e  change i n  t h e  vortex pa t t e rn  is  apparent on t h e  t r a c e  f o r  t he  
0.10 t / w  b a f f l e .  

The paths f o r  t he  
For t h e  0.23 b a f f l e  and th i cke r ,  a s ing le  s t rong vortex d id  not form, 

Similar s tud ies  were conducted a t  other  amplitudes and t h e  r e s u l t s  a r e  
given i n  t a b l e  11. The flow conditions f o r  which a s ingle  vortex formed and 
followed a path away from t h e  b a f f l e  a r e  indicated by plus  s igns.  Conditions 
where no c l e a r  vortex formed and t h e  flow was along t h e  b a f f l e  a r e  marked with 
a minus s ign .  Since the re  i s  a c l e a r  lack  of flow s i m i l a r i t y  between t h e  plus  
and minus regions,  experiments conducted i n  one region should not be appl icable  
t o  t h e  other .  

Table I1 ind ica tes  where major changes i n  flow configuration occur, but it 
For example, i n  f igu re  4 it 

t / w  = 0.1 b a f f l e  d i f f e r s  somewhat 
I n  t h e  presence of t h e  boundaries, t h e  

does not show smaller degrees of change i n  d e t a i l .  
may be seen t h a t  t h e  vortex path f o r  t h e  
f r o m  t h a t  of t h e  thinner  b a f f l e s .  
upper vortex w i l l  tend t o  move downward and outward. This i s  counteracted by 
t h e  upward motion o f  t h e  f l u i d  u n t i l  t h e  downward ha l f  of t h e  cycle begins.  
A t  t h i s  time t h e  lower vortex forms with opposite ro t a t ion  and t h e  t w o  vor t i -  
ces  then move outward away from t h e  b a f f l e .  

Since t h e  o s c i l l a t o r y  f l u i d  motion is  held constant,  t h e  s t rength of t he  

I n  f igu re  4, it may be seen t h a t  both t h e  upper 
vortex determines t h e  path.  Hence, changes of vortex s t rength  can be detected 
by studying t h e  vortex path.  

1Acknowledgment is  given t o  W i l l i a m  E.  Moritz f o r  developing and conduct- 
ing t h e  ink-trace experiments. 
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and t h e  lower vort ices  of t h e  0 . 1 b a f f l e  deviate from t h e  path of t h e  vor t ices  
shed by t h e  thinner  b a f f l e s .  The d i rec t ion  of t h e  deviation indicates  t h a t  
t h e  vor t ices  a r e  becoming weaker and t h a t  t h e  0 . 1 t h i c k  b a f f l e  is  less effec- 
t i v e  than t h e  thinner  ones. 
a r e  so  weak t h a t  they t r a v e l  inward instead of outward. 

When a thickness of 0.23 is  reached, t h e  vor t ices  

Application of Results 

Table I1 and f igure  2 may be used t o  evaluate thickness e f f e c t s  over a 
range of Reynolds numbers from 3,000 t o  l70,OOO. Table I1 indicates  the  bound- 
a r y  of complete breakdown i n  flow s i m i l a r i t y  across which experimental r e s u l t s  
obtained i n  one region would not be v a l i d  i n  t h e  other region. 
effect iveness  due t o  thickness can be estimated from f igure  2 within the  pre- 
c i s ion  indicated and over t h e  Reynolds number range indicated.  These r e s u l t s  
would not be expected t o  apply f o r  Reynolds numbers lower than 3,000 since t h e  
c r i t i c a l  Reynolds number should be higher f o r  t h i c k  p l a t e s  than f o r  t h i n  ones. 

The l o s s  of 

These new experimental r e s u l t s  may have a la rge  e f f e c t  on t h e  interpreta-  
t i o n  of model t e s t  r e s u l t s .  
obtained with a moderately t h i c k  b a f f l e  ( t / w  = 0.22) a r e  compared a t  amplitude- 
to-width r a t i o s  of 0.2 t o  1.5 with Miles' equation which i s  based on data from 
r e l a t i v e l y  t h i n  b a f f l e s  ( t / w  = 0.07). 
concluded t h a t  the '*trends and magnitudes agree c lose ly  with the  equation." 
t h e  present report  it i s  shown t h a t  the vortex flow d i f f e r s  widely f o r  t h e  
above b a f f l e  thicknesses a t  t h e  amplitude-to-width r a t i o s  of the  t e s t .  The 
agreement, then, can only be considered for tu i tous  because t h e  numerical values 
of damping are meaningless unless flow s i m i l a r i t y  i s  establ ished.  

For example, i n  f igure  12 of reference 4, data  

On t h e  bas i s  of t h e  comparison, it is  
I n  

The r e s u l t s  of reference 4 may be in te rpre ted  i n  t h e  l i g h t  of reference 6 
i n  which Miles' equation i s  compared with measured damping of b a f f l e s  of com- 
parable thickness i n  a 3-foot-diameter tank. Reasonably good agreement is  
obtained when the  t a r e  damping ( 5 , )  i s  added t o  t h e  equation. 
accepted as t h e  correct  procedure, then it would appear t h a t  t h e  agreement i n  
reference 4 is  due t o  t h e  compensating e f f e c t  of t h e  t a r e  damping and t h e  baf- 
f l e  thickness.  The addi t ion of t h e  t a r e  damping t o  Miles' equation i s  reason- 
able  because no provision was made i n  t h e  equation f o r  t h i s  e f f e c t .  The 
question of the  t a r e  damping becomes especial ly  c r i t i c a l  i n  s m a l l  tanks a t  low 
amplitudes of o s c i l l a t i o n  where t h e  t a r e  damping i s  a s igni f icant  p a r t  of t h e  
t o t a l  damping measurement. 

If t h i s  is  

Throughout t h e  l i t e r a t u r e ,  many other experiments a r e  described i n  which 
b a f f l e  thickness is  not specif ied.  Unless flow s i m i l a r i t y  i s  establ ished f o r  
these  experiments, agreement with theory may be only for tu i tous  as i n  t h e  
example above, and appl icat ion of t h e  r e s u l t s  t o  large-scale tanks w i l l  be 
questionable. 
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CONCLUSIONS 

The damping of o s c i l l a t i n g  p l a t e s  of varying thickness has been measured 
with w a t e r  i n  a two-dimensional tank and i n  a cy l ind r i ca l  tank over a range of 
amplitudes and frequencies a t  Reynolds numbers from 3,000 t o  l70,OOO. Ink- 
t r a c e  experiments were a l s o  conducted t o  study d e t a i l s  of t h e  vortex pa t t e rns .  
On t h e  bas i s  of  these  r e s u l t s  t h e  following conclusions have been reached. 

1 

1. The effect iveness  of fuel-sloshing ba f f l e s  depends on t h e  thickness of 
t h e  ba f f l e  and t h e  amplitude of o sc i l l a t ion ,  and these  e f f e c t s  should be taken 
i n t o  account i n  applying model r e s u l t s  t o  fu l l - sca le  designs and i n  comparing 
r e s u l t s  of experiments. 

2. Baff le  effect iveness  i s  c lose ly  r e l a t ed  t o  t h e  vortex path; t h e  thick- 
ness e f f ec t  i s  apparent on ink-trace pa t te rns .  

3. I n  comparison of theory and experiment i n  small-scale t e s t s ,  r e s u l t s  
a r e  not r e l i a b l e  unless a c t u a l  s i m i l a r i t y  of f l o w  i s  establ ished.  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  Cal i f . ,  Apr i l  15, 1966 
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TABU I.- FORCE MEASUREMENTS ON OSCILLATING 
PLATE WITH THICKNESS RATIO O F  0.2 

t 
A h  0.33 0.6 0.99 

5.4 9.7 16.3 

0.02 + + + 
.04 + + + 
.10 + + + 
9 23 
.42 
49 

+ - - 
- - - 
- - - 

RUn 

~- m 
1.56 2.46 - 

25.8 40.7 

+ + 
+ + 
+ + 
+ + 
- - 
- - 

259 
260 
261 
262 
263 
264 
265 
266 
26 7 
268 
269 

Period, 
sec . 

1.21 
1.01 
-87 

1.20 
1.01 
90 
76 

1.01 
9 76 
.63 
951. 

- 
RexlO-’ 

122 
146 
1 70, 
83 
98 
111 
130 
48 
64 
77 
94 

“1, 
lb .. 

12.4 
17.8 
26.4 
6.2 
8.6 
11.5 
14.0 
2.2 
3.4 
4.7 
5 -5 

A/w 

1.54 
1.54 
1.54 
1.03 
1.03 
1.03 
1.03 
-5 
05 
-5 
-5 

- - 

a J a 0  

0.92 
96 

1.05 
03 
.80 
.81 
.82 
-55 
-51 
952 
.46 

- 
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.02 

.o I 
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o o  
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Figure 1.- Measured damping i n  a 3-foot-diameter tank with ba f f l e s  of 
various thicknesses (w/a = 0.084, h/a = 2, ys/a = 0.084). 
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Figure 2.- Variation of baffle thickness effect with amplitude to 
width ratio. 
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(a) t/w = 0.1, A/w = 0.6 

(b) t/w = 0.23, A/w = 0.6 

Figure 3.- Example ink trace patterns shown at the same amplitude. 
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\ 

Figure 4.- Vortex paths f o r  b a f f l e s  of various thicknesses 
(A/w = 0.6, Re = 10X103). 
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